NFA vs DFA

DFA: For every state q in S and every character α in Σ, one and only one transition of the following form occurs:

NFA: For every state q in S and every character α in $\Sigma \cup\{\mathrm{e}\}$, one (or both) of the following will happen:
\bullet No transition: q) $\xrightarrow{\alpha}$ (q) occurs
-One or more transitions $\xrightarrow[\alpha]{\alpha}$ (q) occurs

NFA vs DFA (2)

All deterministic automata arenon deterministic

Given a nondeterministic automaton, it is always possible to find a an equivalent deterministic automaton "doing the same"?

That is, given an NFA $\mathrm{M}=(\mathrm{Q}, \Sigma, \delta, \mathrm{s}, \mathrm{F})$ does there exists an equivalent DFA M' $=\left(Q^{\prime}, \Sigma, \delta^{\prime}, s^{\prime}, F^{\prime}\right)$? YES!

We are going to construct the DFA by using the given NFA

Equivalence of NFA and DFA

Definition. Two automata A and A' are equivalent if they recognize the same language.

Theorem. Given any NFA A, then there exists a DFA A' such that A^{\prime} is equivalent to A

Idea of the Transformation: NFA \rightarrow DFA

 We would like:For every transition in NFA:

There is a transition in the equivalent DFA:

where $Q_{i}\left(\right.$ or $\left.Q_{j}\right)$ is related to $q_{i}\left(\right.$ or $\left.q_{j}\right)$

Idea (2): Remove Non Determinism

NFA

DFA

The states in the DFA will be elements in $\wp(\mathrm{Q})$

This is the set: $\quad \delta(\mathrm{q}, \alpha)$

Step 1: Assign Arcs

DFA:

If in the original NFA:

Step 1: Variation

Let S be an state formed by $\left\{q_{1}, q_{2}, \ldots, q_{n}\right\}$, we denote the set $\delta(\mathrm{S}, \alpha)$ as the set of all states that are reachable from states in S by reading α

Step 2 : Eliminatinge-Transitions

Step 3: Handling Undetermined Transitions

Suppose that $\Sigma=\{\mathrm{a}, \mathrm{b}\}$ and we have only a transition for a :
NFA:

What should we do for b ?

DFA:

Step 4: Determining Favorable States

We will make states favorable in the DFA only if they contain at least one state which is favorable in the NFA

NFA:

DFA:

Proof

Given an NFA M $=\left(\mathrm{Q}, \Sigma, \Delta, \varsigma_{,} \mathrm{E}\right)$ suppose that we use the procedure discussed to obtain a DFA
$\mathrm{M}^{\prime}=\left(\mathrm{Q}^{\prime}, \Sigma, \delta, \mathrm{s}^{\prime}, \mathrm{F}^{\prime}\right)$. What needs to be shown to prove that M^{\prime} and M^{\prime} are equivalent?
-For each w accepted by M', w is also accepted by the NFA
-For each w accepted by M, w is also accepted by the DFA

We will show the first one for a "generic" word:

$$
\mathrm{w}=\alpha_{1} \alpha_{2} \ldots \alpha_{\mathrm{n}}
$$

Where each α_{i} is in Σ

Proof (2)

- Proof by induction on the length n of the word

$$
\begin{aligned}
& \quad \mathrm{w}=\alpha_{1} \alpha_{2} \ldots \alpha_{\mathrm{n}} \\
& >\mathrm{n}=1 \\
& >\mathrm{n}=\mathrm{k} \rightarrow \mathrm{n}=\mathrm{k}+1
\end{aligned}
$$

-Suppose that w is accepted by the DFA, what does this means?
D:

Where s' and each s_{i} and s' are states in the DFA (i.e., elements in $\wp(\mathrm{Q})$; where Q are the states in the NFA)

Construction

D:

states in the NFA

Assume no e-transitions for the moment
We have:

each α_{i} is either an α_{j} or e

Main Result

The other direction is very simple (do it!):
For each w accepted by N, w is also accepted by D

Theorem. Given any NFA N, then there exists a DFA D such that N is equivalent to D

