

NFA vs DFA (2)

All deterministic automata are non deterministic

Given a nondeterministic automaton, it is always possible to find a an equivalent deterministic automaton "doing the same"?

That is, given an NFA M = $(Q, \Sigma, \delta, s, F)$ does there exists an equivalent DFA M' = $(Q', \Sigma, \delta', s', F')$? **YES!**

 $\delta: \mathbf{Q} \times (\Sigma \cup \{e\}) \times \wp(\mathbf{Q}) \qquad \delta': \mathbf{Q}' \times \Sigma \rightarrow \mathbf{Q}'$

We are going to construct the DFA by using the given NFA

Equivalence of NFA and DFA

Definition. Two automata A and A' are **equivalent** if they recognize the same language.

Theorem. Given any NFA A, then there exists a DFA A' such that A' is equivalent to A

Idea of the Transformation: NFA \rightarrow DFA

We would like:

For every transition in NFA:

There is a transition in the equivalent DFA:

where Q_i (or Q_j) is related to q_i (or q_j)

Step 1 : Variation

Let S be an state formed by $\{q_1, q_2, ..., q_n\}$, we denote the set $\delta(S, \alpha)$ as the set of all states that are reachable from states in S by reading α

Proof

Given an NFA M = $(Q, \Sigma, \Delta, s, F)$ suppose that we use the procedure discussed to obtain a DFA M' = $(Q', \Sigma, \delta, s', F')$. What needs to be shown to prove that M and M' are **equivalent**?

For each w accepted by M', w is also accepted by the NFAFor each w accepted by M, w is also accepted by the DFA

We will show the first one for a "generic" word:

$$w = \alpha_1 \alpha_2 \dots \alpha_n$$

Where each α_i is in Σ

•Suppose that w is accepted by the DFA, what does this means?
D:

$$s' = a_1 a_2 \dots a_n$$

 $a_1 = b_n =$

(i.e., elements in $\wp(Q)$; where Q are the states in the NFA)

Assume no e-transitions for the moment

